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Abstract

In this paper, the parametric sensitivities of a structure preserving a power system
model are derived in the interest of effective model reduction. This parametric sensitivity
analysis defines the sensitivity of a steady state point against the variation of a particular
system parameter. The parametric sensitivities are derived here by studying the effects
changes in a given parameter over the system natural modes of the variations on the small
signal stability and the results obtained were confirmed. Also the correlations between

different inherent modes resulting from small perturbation stability have been confirmed.

Keywords: Participation Factor, Sensitivity analysis, modal interaction, power system

stability, small perturbation analysis.
1. Introduction

The state of stability of power system is not only defined by the rate of decaying
oscillations or its positive damping but also by the stability of its parameters. It is also
important to identify the state variable and parameters that contribute to developing a
particular type of the effect of instability. In this work a comprehensive dynamic model is
developed to study the system parameter over the resulting system stability using a dq0
model. The electromechanical oscillations and their damping, as well as dynamic voltage
stability between a remotely located synchronous machine and the remaining of a power
system are studied. A single-machine infinite-bus system case that investigates only local
oscillations' sensitivities to parametric variation is introduced. The effect of parameters
variation in machine parameters such as Ra, Ry, Rkd, Rig, H, tie line parameters such as R,

Xe and loading conditions such as P, Q, over power system natural modes is analyzed.
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Due to the possible large number of modal interactions it is often necessary to
construct a reduced order model for dynamic stability studies by retaining only modes of
interest while preserving the consistency of the analysis. The appropriate identification of
the state variables significantly participating in a given mode becomes effective in
defining the end form of the reduced order model. This requires a tool for identifying the
state variables that have a significant participation in a selected mode. It is natural to
suggest that the significant state variables for an eigenvalue A; are those that correspond to
large entries in the corresponding eigenvector vi. Verhese et al. [1] have suggested a
related measure of a state variable participation factors (PF). Participation factor analysis
assists in the identification of how much each dynamic state variable affects a given mode

or eigenvalue.

2. Preliminary

In power system analysis, mathematical equations that represent the power system
under study in the dg0 model are generally described by seven nonlinear differential
equation for the case where only one damper circuit on each axis is considered as shown
in appendix [I]. This set of nonlinear differential equations can be linearized around a
quiescent operating point on a basis of small perturbation. The mathematical description
thus obtain yield a linearized system of differential equation with constant coefficient

which will take the form:

X = AX + BU
The Participation factor is a sensitivity measure of an eigenvalue to a diagonal entry of
the linearized system matrix, and can be defined as

o,
o0ay,

PR, =

Where, PFi, is the participation factor relating the k™ state variable with the i eigenvalue,

ai is the k™ entry of the system matrix A.

It is well known that if A has all its eigenvalues 4; (i=1,2,....... ,m), then it will have m
corresponding linearly independent mx1 eigenvectors v (i=1,2,........,m) satisfying the
relation

Av, = A4u, (1 =12,...... ,m)



Here v; is called the right eigenvector associated with 4. There also exists a vector w;'

satisfying the relation,
' A=w'A,@[{=12,....m)

Where t denotes matrix transposition and this vector is the left eigenvector.

Hence PF can be defined as

PF, =242 (1=12,....m)

Where wyi and vy are k™ entries in the right and left eigenvectors associated with the i
eigenvalue 4. Equivalence between two definitions of the participation factor can be
derived considering the system
[A— A 1], =0.0
o, [A-41]1=0.0
To examine the sensitivity of the eigenvalue A; of the diagonal element of the system
modal matrix A; The perturbed equations will read;
(A+AA) (v, + Av) =4 +ALL) (o, + Ayy)
[Av, 1+ [AAD;, + Av; Al +[AU,AA] =[A4,0,]1+[AA, 0, + Av, A, ]+ [Av, AL ]

After appropriate mathematical manipulations, will yield

@, AAD, = w," A4,

Assuming that the k™ diagonal element of matrix A is perturbed so that AA = Aa,, ,

hence
[a,, a, ...... a,,
A — a,, > P a, .,
akk

_aml amm

Ke o ...... @)

O o ....... (@)

AA =
Aa, .-
| O O




Now the sensitivity of the eigenvalue A; with respect to diagonal elements of the matrix A

is related to the PF as follows:

A% _ W4 Vg = PF,,

t
Aay, @; U

3. Study Case

The above mentioned methodology is applied to a single-machine infinite-bus

system whose detailed power system model is described in appendix (I).

Gen Ve Tr vV, Ve

O+ —

This formulation includes both the generator electrical and mechanical models. The

analysis is performed after the machine is undergoing a small perturbation; the state space
representation for system model in small perturbed form is given in appendix (II). The

perturbed system equations in matrix form is given as:

EAX® = FAX
AX*® = E'FAX
= AsysAX
Where Asys = E'F and

E denotes the matrix of coefficient of the derivative of the perturbed state variables

F denotes the matrix of coefficient of the perturbation state variables

As no feedback control action is considered, it goes without saying that the matrix Au of

the perturbed input state variables becomes a null matrix



4.Results

1- Eigen vector P.F

The eigenvalues and eigenvectors of the perturbed system matrix Asys are extracted. The

different modes obtained are listed below in table I.

Table (I): Eigenvalues and Eigenvectors (single M/C- IBB).

Stator Modes

Rotor Modes

Electrical Modes

Mechanical Modes

Field D — Damper | Q- damper Hunting

Eigenvalues () | -7.0312+376.95i -0.2404 -32.057 -9.6926 -0.45522+9.1372i
. iy 0.5291 - 0.0037i -0.35166 -0.043367 -0.036292 -0.028037-0.030995i
_— ig -0.0009 + 0.52509i 0.077895 0.00022283 0.22864 -0.035622-0.022153i

ﬁ g it 0.2306 - 0.0215i -0.87814 0.6559 -0.040568 -0.020724-0.02995i
g g g 0.2792 +0.0197i -0.030526 -0.75081 0.0069605 | -0.0061565+0.001832i
s g kg -0.0087 + 0.5063i | -0.0032287 | 0.00026214 0.55143 -0.034851+0.0008586i

= 5’ ® -0.2323 + 0.0354i -0.073243 -0.06472 0.79617 -0.71159+0.68979i
3 0.0001 + 0.0006i 0.30467 0.0020189 -0.082142 -0.071436-0.081437i

The participation factor technique is there after applied to the eigen vectors. The results of

which are given in table Il and are named after the predominant dynamic variable.

Table Il - Participation Factor of State Variables in System Mode

State Stator & Rotor Modes
Variables Nﬁqtg\ggk Field mode | D-damper | Q-damper Hunting
ig 0.34793 0.399150 0.02908 0.11366 0.066903
Iq 0.34561 0.011011 0.00000 0.21351 0.050971
it 0.06999 0.481500 0.18479 0.00900 0.062181
Ikd 0.08459 0.075657 0.78555 0.00568 0.010270
kg 0.15172 0.025197 0.00000 0.36963 0.044229
Q 0.00000 0.007025 0.00027 0.27184 0.382730
A 0.00014 0.000462 0.00030 0.01670 0.382720

2- Effect of ParameterVariation

The effect of parameter variation on each mode is applied to the set of modes to work out
their sensitivity of each of the predominate. This analysis will be performed in three

major steps:

a.Study of the variations in generator transformer parameters.

b.Study of the variations in transmission system parameters.
c.Study of the variations in initial loading condition.




a) Effect of Variation in Generator/Transformer Parameters

To assess the effect of the parametric variation on the inherent modes,
eigenvalue program is to be executed several times, with a certain step of
variations of parameters under consideration. The selected machine parameters
under consideration are armature R, or transformer resistance Ry, field resistance
Ry, direct and quadrature axis damper resistance Ruqg, Riq respectively, rotor inertia
(2H). The system inherent modes are represented by recording the variation in
both damping factors, and the angular frequency of oscillations. The most

sensitive modes are to be shown.

b) Effect of Variation in Loading Condition

a. Effect of Variation in Circuit External impedance
Here the eigenvalue program is to be repeated several times, keeping the

constant variation in both external resistance and reactance of the tie line. The

most sensitive modes are to be shown.
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5. Conclusion

6. References

[1] P.J. Nolan, N. K. Sinha and R. T.H. Alden,” Eigenvalue sensitivities of power
systems including network and shaft dynamics”, IEEE Transaction on power
apparatus and systems, Vol. PAS-95, No. 4, July/August 1976.

[2] H. M. Zein EI-Din, R. H.T. Alden, “Second order eigenvalue sensitivity applied to
power system dynamics”, IEEE Transaction on power apparatus and systems, vol.
PAS-96, no.6, Nov/Dec 1977.

[3] A. W. Rankin, “Per-unit impedance of synchronous machines,” AIEE Trans., 64,
Aug.1945.

[4] I. M. Canay, “Determination of model parameters of synchronous machines,” IEE
Proc., 130, Part B, 2, Mar. 1983, 86-94.

[5] Pagola, F.L. Perez-Arriaga, 1.J. Verghese, G.C., “on sensitivities, residue and
participations: applications to oscillatory stability analysis and control,” IEEE
Trans on power systems, vol.4, no.1, pp. 278-285, Feb 1989.

[6] M. E. Haque and M. F. Reham,” Influence of stator resistance variation on direct
torque controlled interior permenant magnet synchronous motor derive
performance and its compensation,” industry applications conference, 2001,
thrity-sixth 1AS annual meeting, vol. 4, pp. 2563-2569, Chicago, 30sept-3oct
2001.

[7] G. C. Verghese, 1. J Perez-arriage and F. C Schweppe, “selective modal analysis
with applications to electric power systems, Part [ and 1I,” IEEE Trans. Power

Appar. Syst., PAS-101, Sept.1982, 3117-3134.

10



Appendix |
System Data from reference [21] on a basis of 500 KV, 10 GW
Generator Data: Xgq =151, X9 =131, X; =02, Xq=149, Xq=129, Xt =142, X4 =14, X3 =134,
R, =0.0015, R; =0.00063, Ry =0.0153, qu =0.0207, 2H =5.24sec, D=0.0
Transformer Data: R, =0.003—-0.0045, X =0.135
Transmission Line Data Ry =0.02-0.027, Xy =0.905
Receiving System Ry =0.005, X =0.3
Initial loading condition at infinite bus bar, v° =10, P, =0.8 , Q, =06, @, =3770 rad/sec P, =0.81
All values mentioned above are taken in p.u on a basis of machine rating unless otherwise stated

Appendix 11

Mathematical Model for a Single Machine —Infinite Bus Bar System
The mathematical description of the transient model for single machine infinite bus bar system shown in fig.1 is given

below with state space vector X" =[ig, iq.i ikg ikq: @r 0]
—(~Xgiig + Xagdit + Xagikd) = Rtig + — (=X gtig + Xagikg) +V > sind
@ dt'd ad'f ad'kd tid s qtlq agkg
P . . . . . .
2 Xatig + Xadikg) = Rtiq _%(_th'd +Xadif + Xadikg) +V *© cosd

P . . . .
a)—(—xadld +Xf|f +Xad|kd):_Rflf +Vf
(6]

P . . .
—(—Xgqgig + Xl =—Rynl
o e * Xkglka) = Rugkg

ﬁpa)r =Tm —Tem —Ra)r, where Tem II//diq —l//qid
%o @0
P8=a)r

Where th:Xd +Xtr+Xt| y th=Xq+Xtr+Xt|, Rt :Ra+Rtr +Rt| , X :Xd —Xq,
Tem :7Xidiq + Xadif iq + Xadikdiq — Xaqikqid

The steady state machine equation is derived from the system of equations given above by making the following

substitutions:

(a)The operator P = % =0, (b)The per unit slip ratio “r _1 and (c) the steady state damper current iygo =iygo =0.
(29

. X
Vad = Xqlq—Ralq and Ef =Vgq +Raig + Xglg = Ridvf

11
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