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Abstract 

In this paper, the parametric sensitivities of a structure preserving a power system 

model are derived in the interest of effective model reduction. This parametric sensitivity 

analysis defines the sensitivity of a steady state point against the variation of a particular 

system parameter. The parametric sensitivities are derived here by studying the effects 

changes in a given parameter over the system natural modes of the variations on the small 

signal stability and the results obtained were confirmed. Also the correlations between 

different inherent modes resulting from small perturbation stability have been confirmed. 
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1. Introduction 

   

The state of stability of power system is not only defined by the rate of decaying 

oscillations or its positive damping but also by the stability of its parameters. It is also 

important to identify the state variable and parameters that contribute to developing a 

particular type of the effect of instability. In this work a comprehensive dynamic model is 

developed to study the system parameter over the resulting system stability using a dq0 

model. The electromechanical oscillations and their damping, as well as dynamic voltage 

stability between a remotely located synchronous machine and the remaining of a power 

system are studied. A single-machine infinite-bus system case that investigates only local 

oscillations' sensitivities to parametric variation is introduced. The effect of parameters 

variation in machine parameters such as Ra, Rf, Rkd, Rkq, H, tie line parameters such as Re, 

Xe and loading conditions such as P, Q, over power system natural modes is analyzed.  
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Due to the possible large number of modal interactions it is often necessary to 

construct a reduced order model for dynamic stability studies by retaining only modes of 

interest while preserving the consistency of the analysis. The appropriate identification of 

the state variables significantly participating in a given mode becomes effective in 

defining the end form of the reduced order model. This requires a tool for identifying the 

state variables that have a significant participation in a selected mode. It is natural to 

suggest that the significant state variables for an eigenvalue λi are those that correspond to 

large entries in the corresponding eigenvector υi. Verhese et al. [1] have suggested a 

related measure of a state variable participation factors (PF). Participation factor analysis 

assists in the identification of how much each dynamic state variable affects a given mode 

or eigenvalue.  

 

2. Preliminary 

 

In power system analysis, mathematical equations that represent the power system 

under study in the dq0 model are generally described by seven nonlinear differential 

equation for the case where only one damper circuit on each axis is considered as shown 

in appendix [I]. This set of nonlinear differential equations can be linearized around a 

quiescent operating point on a basis of small perturbation. The mathematical description 

thus obtain yield a linearized system of differential equation with constant coefficient 

which will take the form: 

BUAXX 


 

The Participation factor is a sensitivity measure of an eigenvalue to a diagonal entry of 

the linearized system matrix, and can be defined as 

kk
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Where, PFin is the participation factor relating the k
th

 state variable with the i
th

 eigenvalue, 

akk is the k
th

 entry of the system matrix A. 

It is well known that if A has all its eigenvalues λi (i=1,2,…….,m), then it will have m 

corresponding linearly independent m×1 eigenvectors υi (i=1,2,……..,m) satisfying the 

relation  

),.......,2,1(, miA iii    
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Here υi is called the right eigenvector associated with λi. There also exists a vector ωi
t
  

satisfying the relation, 

),.......2,1(, miA i

t

i

t

i    

Where t denotes matrix transposition and this vector is the left eigenvector. 

 

Hence PF can be defined as  
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Where ωki and υki are k
th

 entries in the right and left eigenvectors associated with the i
th 

eigenvalue λi. Equivalence between two definitions of the participation factor can be 

derived considering the system  
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To examine the sensitivity of the eigenvalue λi of the diagonal element of the system 

modal matrix A; The perturbed equations will read;  
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After  appropriate mathematical manipulations, will yield 

 

 

Assuming that the k
th

 diagonal element of matrix A is perturbed so that ,kkaA   
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Now the sensitivity of the eigenvalue λi with respect to diagonal elements of the matrix A 

is related to the PF as follows: 
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3. Study Case 
 

 

  The above mentioned methodology is applied to a single-machine infinite-bus 

system whose detailed power system model is described in appendix (I).  

 

 

 

 

 

This formulation includes both the generator electrical and mechanical models. The 

analysis is performed after the machine is undergoing a small perturbation; the state space 

representation for system model in small perturbed form is given in appendix (II). The 

perturbed system equations in matrix form is given as: 

                                                    XFXE    

                                                      XFEX  1   

                                                              XAsys  

 Where                                          FEAsys 1                              and 

E denotes the matrix of coefficient of the derivative of the perturbed state variables 

F denotes the matrix of coefficient of the perturbation state variables 

 

As no feedback control action is considered, it goes without saying that the matrix u of 

the perturbed input state variables becomes a null matrix 

 

 

 

 

 

Gen Tr 
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4.Results 

1- Eigen vector P.F 

The eigenvalues and eigenvectors of the perturbed system matrix Asys are extracted. The 

different modes obtained are listed below in table I.  

 

Table (I): Eigenvalues and Eigenvectors (single M/C- IBB). 

 Stator Modes 

Rotor Modes 

Electrical Modes Mechanical Modes 

Field D – Damper Q- damper Hunting 

Eigenvalues (λi) -7.0312±376.95i -0.2404 -32.057 -9.6926 -0.45522±9.1372i 

N
o

rm
a

li
ze

d
 

E
ig

en
v

ec
to

rs
(υ

i)
 id 0.5291 - 0.0037i -0.35166 -0.043367 -0.036292 -0.028037-0.030995i 

iq -0.0009 + 0.5259i 0.077895 0.00022283 0.22864 -0.035622-0.022153i 

if 0.2306 - 0.0215i -0.87814 0.6559 -0.040568 -0.020724-0.02995i 

ikd 0.2792 + 0.0197i -0.030526 -0.75081 0.0069605 -0.0061565+0.001832i 

ikq -0.0087 + 0.5063i -0.0032287 0.00026214 0.55143 -0.034851+0.0008586i 

ω -0.2323 + 0.0354i -0.073243 -0.06472 0.79617 -0.71159+0.68979i 

δ 0.0001 + 0.0006i 0.30467 0.0020189 -0.082142 -0.071436-0.081437i 

 

The participation factor technique is there after applied to the eigen vectors. The results of 

which are given in table II and are named after the predominant dynamic variable. 

 

Table II - Participation Factor of State Variables in System Mode 

State 

Variables 

Stator & 

Network 

mode 

Rotor Modes 

Field mode D-damper Q-damper Hunting 

id 0.34793 0.399150 0.02908 0.11366 0.066903 

iq 0.34561 0.011011 0.00000 0.21351 0.050971 

if 0.06999 0.481500 0.18479 0.00900 0.062181 

ikd 0.08459 0.075657 0.78555 0.00568 0.010270 

ikq 0.15172 0.025197 0.00000 0.36963 0.044229 

Ω 0.00000 0.007025 0.00027 0.27184 0.382730 

Δ 0.00014 0.000462 0.00030 0.01670 0.382720 

 

 

 

 

 

 

2- Effect of ParameterVariation  
The effect of parameter variation on each mode is applied to the set of modes to work out 

their sensitivity of each of the predominate. This analysis will be performed in three 

major steps:    a.Study of the variations in generator transformer parameters. 

                b.Study of the variations in transmission system parameters. 

                c.Study of the variations in initial loading condition. 
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a) Effect of Variation in Generator/Transformer Parameters 
 

To assess the effect of the parametric variation on the inherent modes, 

eigenvalue program is to be executed several times, with a certain step of 

variations of parameters under consideration. The selected machine parameters 

under consideration are armature Ra or transformer resistance Rtr, field resistance 

Rf, direct and quadrature axis damper resistance Rkd, Rkq respectively, rotor inertia 

(2H). The system inherent modes are represented by recording the variation in 

both damping factors, and the angular frequency of oscillations. The most 

sensitive modes are to be shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Effect of Variation in Loading Condition 

a. Effect of Variation in Circuit External impedance 

Here the eigenvalue program is to be repeated several times, keeping the 

constant variation in both external resistance and reactance of the tie line. The 

most sensitive modes are to be shown.  
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Fig. 2- Effect of variation in Ra and XTL/RTL ratio on the stator mode. 

 

 

 

 

 

 

 
Fig. 3- Effect of variation in Rfd, Rkd, XTL/RTL ratio and cos on the field mode. 
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Fig. 4- Effect of the variation in Rfd and Rkd on the D-damper mode. 

 

 

 

 

 

 

 
 

 
 

Fig. 5- Effect of the variation in Rfd,H, XTL/RTL ratio and cos on the Q-damper mode. 
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Fig. 6- Effect of the variation in Rfd,Rkd,Rkq,H, XTL/RTL ratio and cos on the Hunting mode. 
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5. Conclusion 
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Appendix I 

System Data from reference [21] on a basis of 500 KV, 10 GW 

Generator Data: 51.1dX , 31.1adX , 2.0lX , 49.1qX , 29.1aqX , 42.1fX , 4.1kdX , 34.1kqX , 

0015.0aR , 00063.0fR , 0153.0kdR , 0207.0kqR , sec 24.52 H , 0.0D  

Transformer Data: 0045.0003.0 trR , 135.0trX  

Transmission Line Data 027.002.0 tlR , 905.0tlX  

Receiving System 005.0sR , 3.0sX  

Initial loading condition at infinite bus bar, 0.1V ,     80.P  , 6.0Q , rad/sec  0.377o   81.0P   

All values mentioned above are taken in p.u on a basis of machine rating unless otherwise stated 

 

Appendix II 

Mathematical Model for a Single Machine –Infinite Bus Bar System 

The mathematical description of the transient model for single machine infinite bus bar system shown in fig.1 is given 

below with state space vector ],,,,,,[  rkqkdfqd
t iiiiiX  : 

 sin)()( VkqiaqXqiqtX
o

r
ditRkdiadXfiadXdidtX

o

P






 

 cos)()( VkdiadXfiadXdidtX
o

r
qitRkqiaqXqiqtX

o

P
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
 

fVfifRkdiadXfifXdiadX

o

P
 )(


 

kqikqRkqikqXqiaqX
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 )(


 

r
o

D
emTmTrP

o

H








2
,   where dqqdem iiT    

          rP   

Where tltrddt XXXX  ,  tltrqqt XXXX  ,  tltrat RRRR  ,  qd XXX  , 

            dkqaqqkdadqfadqdem iiXiiXiiXiXiT   

The steady state machine equation is derived from the system of equations given above by making the following 

substitutions: 

(a)The operator 0
dt

d
P , (b)The per unit slip ratio 1

o

r




 and  (c) the steady state damper current 0 kqokdo ii . 

qaqqGd IRIXV    and f
f

ad
dddaGqf V

R

X
IXiRVE   
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